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Relative Distance-An Error Measure 
in Round-Off Error Analysis 

By Abraham Ziv* 

Abstract. Olver (SIAMJ. Numer. Anal., v. 15, 1978, pp. 368-393) suggested relative precision 
as an attractive substitute for relative error in round-off error analysis. He remarked that in 
certain respects the error measure d(x, x) = min{a I - a < xx < 1/(1 - a)), xi: 0, 

x/x > 0 is even more favorable, through it seems to be inferior because of two drawbacks 
which are not shared by relative precision: (i) the inequality d(Xk, xk) I k d(x, x) is not 
true for 0 <I k < 1. (ii) d(x, x) is not defined for complex x, x. In this paper the definition 
of d(, ) is replaced by d(x, x) x- x /max x I, x 1}. This definition is equivalent to 
the first in case x # 0, x/lx > 0, and is free of (ii). The inequality d(xk, xk) < k d(x, x) 
is replaced by the more universally valid inequality d(Xk, xk) < k d(x, x)/(l - 8), 8 3 
max{d(x, x), k d(x, x)}. The favorable properties of d(, ) are preserved in the complex 
case. Moreover, its definition may be generalized to linear normed spaces by d(x , x) = 

llx- xl/max{llxll, H1xHl}. Its properties in such spaces raise the possibility that with further 
investigation it might become the basis for error analysis in some vector, matrix, and function 
spaces. 

1. Introduction. Let x- be a real number which is an approximation of another real 
number x. The relative error 

(1) p(x-, x) = ( x--x)/x (x # 0), 

is often used to measure the derivation of x- from x. This definition is very simple 
and its meaning is intuitively clear. It has however certain annoying drawbacks 
which have to do primarily with the elegance of error analysis, the simplicity of error 
bounds and the ease with which they are derived. To be more specific: 

(a) p(x-, x) is not a metric, and often p(x-, x) #7 p(x,-) , ) p(x, z) 

IP(x, Y) I + I P(Y, Z) I 
(b) Let x- be an approximation of xl, and denote p, = p(x-,, xl). Let y i x[, 

where r, are integers. Then y= XI .x-' is an approximation of y. To the first order, in 
max p p, p(y-, y) is equal to I rip1, so some authors take l rp I as an approximate 
bound of p(y-, y); see, e.g., [1]. Unfortunately, though, this is not a true bound. 

In view of this, one is tempted to try to replace the familiar concept of relative 
error by something else. Olver [3] suggests the so-called 'relative precision' as a 
substitute. He denotes 

(2) aza; rp(a) 
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whenever a/a = e", where I u I < a. In the spirit of (1) one might define 

(3) rp(x-, x) = log(5-/x) (x 7&0, x-/x > 0), 

so (2) becomes equivalent to I rp(a, a) < a. Obviously, rp(5-, x) = p(x-, x) + 
O( p2( x)), and therefore relative precision does not differ much from relative 
error. It is, however, free from the annoying (a) and (b) and has some other 
convenient properties. 

Another substitute mentioned in [3] is what shall be referred to later as 'relative 
distance': 

(4) d(x-, x) = min {a 1 a < xlx- < I/ (I1-a)) (x- 7# 0, xlx- > 0). 

Obviously, d(x-, x) p(x-, x) I O(p2(X, x)), and it is also free of (a), (b). 
Relative distance and relative precision are quite similar in their properties which 

have to do with error analysis. In spite of the simplicity of definition and of error 
bounds with relative distance, compared to relative precision, and in spite of the fact 
that relative distance corresponds more closely to relative error (relative error may 
be defined also by p(x-, x) = min{e I 1-E < x-/ 1 + e}, x =# 0), relative preci- 
sion was preferred in [3] because of two reasons: 

(i) For every real k 

a -a; rp(a) a k -ak; rp(l k Ia), 

whereas the necessary condition I k 1 restricts the analogous property of relative 
distance. 

(ii) The definition of relative precision carries over to complex numbers with all its 
important properties preserved. It is not clear, on the other hand, how to generalize 
(4) to complex 5-, x. 

In what follows, the definition of relative distance is generalized in a way that 
eliminates (ii). It is shown that the property mentioned in (i) has a reasonable 
substitute, which is valid for relative distance without the restriction I k I> 1. The 
most interesting properties of relative precision are shown to hold for the generalized 
form of relative distance too-not only for real numbers but also for complex 
numbers. Moreover, relative distance is generalized to linear normed spaces. Its 
properties in such spaces raise the possibility that, with further investigation, it 
might become the basis for error analysis in some vector, matrix, and function 
spaces. 

2. Relative Distance in the Spaces of Real or Complex Numbers. The following 
definition of relative distance is meaningful for both real and complex x-, x: 

(5) d(xV, x)= Ix- -x I/max { Ix- I, Ix 1, d(0, 0) =0. 

One should notice its simplicity, compared to the definition of relative precision, 
particularly in cases where x-/x is not real positive. It is not difficult to show that 
this is equivalent to (4) whenever (4) is valid. 

The following favorable properties of relative precision, with real numbers, were 
mentioned in [3]. They carry over to complex numbers with very little or no change: 

(I) Symmetry: a - a; rp(a) a d a; rp(a). 
(II) Inclusion: a - a; rp(a), 8 > a a a; rp(3). 
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(IV) a d a; rp(a) ak ak; rp(l k a a) (a, a real positive, k real). 
(V) a - a; rp(a), b - b; rp(,B) ab - ab, a/b ad/b; rp(a + /3). 
(VI) Triangle inequality: a - a; rp(a), a - a; rp(,B) a - a; rp(a + /3). 

An error analysis based on relative distance will obviously satisfy analogues of (I), 
(II), (III). The following theorem is related to (VI): 

THEOREM 1. d(, ), defined by (5), is a metric on the space of complex numbers. 

Proof. This theorem is an immediate corollary of the more general Theorem 10; 
see next section. Therefore, we omit its proof here and refer to the next section. 

Conditions (IV) and (V) were not discussed yet. As for (V) one gets for real or 
complex x, x, y, y: 

d(x-y- xy) d(x-, xy-) + d(xy-, xy) = d(x-, x) + d(y-, y), 

d(x-/y-, x/y) = d(x- -/y-, x l/y) < d(x-, x) + d(I/Jy, l/y) 

= d(x., x) + d(y-, y). 

From this an analogue of (IV) follows immediately for real or complex x-, x and 
integral k: 

(6) d(X-k xk) ?I k I d(x-, x) (x-, x real or complex, k integer). 

It should be observed that nothing more general than (6) is necessary in error 
analysis of computations with real or complex numbers, provided only the four 
arithmetic operations are involved. Actually (6) is true also for values of k other than 
integral but not for all values of k (take, for example, real positive x-, x and k real, 
0 <I k I< 1). The following theorem, however, seems to provide a reasonable sub- 
stitute which is more universal. 

THEOREM 2. Let x-, x, k be complex numbers that satisfy max{d(x-, x), I k I d(x-, x)} 
8 < 1, X-X #0. If xk exp(klogx), =k exp(klogx-) where the log branches 

are such that -37T/2 < Im{log X- - log x} < 37T/2 (actually 8 < 1 -S7/2 < 

Im{ log x- -log x} < 7/2), then 

(7) d(X- X <)I kgI d(x-, x)/ (I1-8). 
Note that k d(x-, x)/(l -8) = k d(x-, x) + O(d 2(,x)), (-x), so the 

bound in (7) does not differ significantly from the bound (6). 
Proof of Theorem 2. Since the theorem is symmetric with respect to x- and x, it 

suffices to consider the case Ix x- I-, in which d(x-, x) = -/x - 1 . Let us 

denote7x/x -1 0= . Obviously I 0 d(x-, x) < 8 < 1. Now 

d(x-k Xk) =|X-k- xkl/max{jYkl, lXkl} ) k/X -kX 

- k(k-1)... (k-n+ 1)0n 

j? IkOl (Ikl+ 1)1.1 (jklj+?n - II) joj 

n-l 1 2 n 
00 

<jIkOl 2 an- -=kjd(x-, x)/(l - 8). 
n= 1 
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Remark. If d(Q, ) is replaced by p(-, ) j in the last theorem, it still remains true. 
The proof is similar. 

Finally let us discuss bounds for the error in sum and difference of approximate 
quantities and also a relative distance analogue of the conversion from real rp to 
complex rp, discussed in [3]. 

The following theorem is related to the first of these problems and provides 
bounds for both sum and difference: 

THEOREM 3. Let x(i), x0i) (i = I. . . ,n) be either real or complex numbers and let 
d(*, ) be defined by (5). If d(5(i), x(i)) < E < 1 (i 1,. ..,n) and Y X() 0, then 

d (Ex() i x(i < p <p ? 

where 

Pt =x()/ E 5f) e (x(') , x(')) (i=1 . n) 

n n 

p= IVE 1XZ E 5(j). 
i=1 j=l 

As for the second problem, the following is an easy-to-prove result: 

THEOREM 4. Let X = X1 +F iX2, XX1 + iX2, where i = -l and.xl, 5 2, xl, x2 are 
real numbers, and let d( , -) be defined by (5). If (xl, xl) e , d(x2, x2) ? E, 0 < E < 1, 
then d(x., x) < E/(I -). 

Proofs of Theorems 3, 4. These theorems may be easily generalized with no 
significant changes in the proofs. We refer to the next section for proofs of the 
generalizations; see Theorems 30, 4?. 

3. Relative Distance in Linear Normed Spaces. The definition (5) of relative 
distance may be easily generalized to linear normed spaces. For x, x, which are 
points of such a space, let us define 

(8) d(5x, x) = 1x- xf/max{| 11IL, ltxil}, d(O, 0) 0 

with 11 * 11 being the norm in the space. 
Error analysis based on this generalization obviously satisfies analogues of (I), 

(II), and (III); see Section 2. As for (VI) the following is a generalization of Theorem 
1: 

THEOREM 10. Let S be a linear normed space with the norm denoted II * fl. If . *I 
originates from an inner product, i.e., if lIX 12 =(x, x), where ( , ) is an inner product 
in S, then d(, .), defined by (8), is a metric on S. 

It should be noted that this theorem is sufficiently general to imply that d(, ), 
defined by (8), is a metric in Euclidian n-spaces, in matrix spaces with the Frobenius 
norm (see [5]), and in function spaces with the L2 norm. So in each of these spaces 
error analysis, based on (8), will satisfy an analogue of (VI). Note also that Theorem 
1 is easily deducible from Theorem 10. 
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Proof of Theorem 10. Of all the properties of a metric the triangle axiom is the 
only one which is not self-evident. Let then x, y, z denote three points in S, and 
assume that I I z YII y I lIxiI > 0 (the case lIxiI = 0, which was omitted, is 
simple). The following three inequalities need to be proved: 

(A) d(x, z) < d(x, y) + d(y, z) lix-zii/iizii 
.< 1 x - Y 1/11 Y 1 + 11 Y - z 11/11 z 1, 

(B) d(y, x) < d(y, z) + d(z, x) <j11 y-x 11/iiyii 
.< ly - zil/lIzil + liz - xll/liZii, 

(C) d(z, y) < d(z, x) + d(x, y)11lz-y1/ z 11z 

< llz - xll/llzll + llx -yll/llyii. 

The proof of (A) is not difficult: 

lix - zll il(x -y) + (y - z)li < llx -yli + ily - zll llx - zll/lizii 

? lix -yii/iizii + lly - zil/lizil z lix -yii/iiyli + iiy - zIl/jizIl. 
The proof of (C) is much the same. In order to prove (B) the following, which is true 
for norms that originate from inner products, is used: 

(9) a, ,B real, llull= jllvllj lau-,fvll=l =ljfu-avll. 

In order to prove it, notice that 

jlau - fvll = llfu - avll 4 (au - 3v, au - /v) = (Au - av, fu - av), 

and this follows immediately from the bilinearity of inner products. Turning back to 
(B) one sees that it is equivalent to 

II - r xjj?jrz-rX y - lr2 jl + -rlr2Xii, 

where 

X/j = jX , Y =lY/llY|, Z^ z/jjZj, r, = llxll/llyll, r2 = llyll/IIzl. 

This in turn is equivalent to (see (9)) 

jjr1y - -1?IYI- r2z2II + IIrr2z - II - Ir - rr2zii+ |rlr2z-Xjj 

which follows immediately from the triangle inequality for the norm because 
1/r1 > 1. 

Powers, products, and ratios are not defined in general linear normed spaces. 
Therefore one does not expect to find analogues of (IV) and (V) for the generalized 
d(*, .). There is, however, one exception: Let (, ( be scalars (real or complex) and 
yj, y points in a linear normed space. Then 

d(j- -, y) < d(-y, +y) ? d(y-, (y) = d(-, +) ? d(y-, y). 
Finally, let us present generalized versions of Theorems 3 and 4: 

THEOREM 30. Let x-( (I)( 1,.. . ,n) be points in a linear normed space, and let 
d(, ) be defined by (8). If d(x-('), x(i)) < E < 1( 1,.. . ,n) and 2 1() :F# 0, then 

n n n 

d Ex-i x(l <- < -i - 
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where 

Pi =||x()|| || 2(i)i)||, e- = d ( x-('), x(')), p = 
I jjx(i) X)| 

THEOREM 4?. Let x- = (X-1,. .,X-) . x (X1,. ...,Xn), where x-i, xi are real numbers, 
and let d(, ) be defined by (5) for numbers and by (8), where 11 - 11 is the Euclidian 
norm, for n-vectors. If d(x-,, xl) < - < 1 (i = 1,...,n), then d(x-, x) < -/(- 

Proof of Theorem 30. 

d { -i,2X(i)) < | (X()X(1) II/IJI | 
__ 1 1=1 / ~~~~~J= 

n 

< Pi-lix-() - x011111V01(X)l 
i=lI 

Let us denote 1x-(l) - x = p, and observe that max{ 11X-(i), 11 x(l) < 

Ix-(i)j1 + xI x-(i) . It follows that 

d(x.('), x(')) > | - xI - + p= < d (x_ -, x( ))/[1 - d(x , x')] 
II1X'0II ? IWO~' - x('II 1 I + 

and the desired inequality follows immediately. 
Proof of Theorem 40. Denote d(x-,, xi) = ci. Then either x-l = xi(I -i) (if x-l1< 

xl 1) or x-l xl/(1 - ) (if I x-l I x, 1). Hence either x-i -xi =-c6x or x -lxi 
= xi 1/(1 - -e). In both cases | - xl I<I xl1 I1/(1 - i) <I xi1 e/(1 - ), so 

lx- --x xii< xilx/(1 - )l x ll-/(I-c), and therefore d(x-, x) < llx- - x /x 

Remark. The bound -/(1 - E), given in Theorem 40, is not the best possible. It 

can be shown that for every 0 < - < 1 and every n > 2 the best bound is 

t/ 21-6 + 26 t/12) < ( + ) 

A Remark on Some Other Generalizations. d(., -) may be generalized to function, 
vector, and matrix spaces also in a different manner. Let x-= x-(t), x = x(t) be 

points of a function space S, and assume that d(-, ) is a metric on the union of the 
ranges of all functions in S. A metric on S may be produced by taking appropriate 
norm of the real valued function d(t) = d(x-(t), x(t)). Thus, e.g., the space of real 
n-vectors may be interpreted as the space of real functions on the finite set 
{ 1,... ,n}. Denoting by x = (X-1,a . . X.n), X = (x1, . . ,Xn) two points in this space, 
each of the following is a metric: 

n n 

Ed(x-,, Xl), d d2xilx) max d (x-, Xl) 

These distance measures are insensitive to changes in the scaling of individual vector 
components. An important difference between them and d(x-, x) is demonstrated by 
the vectors x-= (1, e), x = (1, -2) where - is small. They will be considered close to 
each other if distance is measured by d(x-, x) and significantly separated from each 
other if distance is measured by any of the last measures. 
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